Targeted gene disruption in mammalian cell lines using programmable nucleases
نویسندگان
چکیده
منابع مشابه
Efficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases
Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs) introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in...
متن کاملTargeted gene knockout in mammalian cells by using engineered zinc-finger nucleases.
Gene knockout is the most powerful tool for determining gene function or permanently modifying the phenotypic characteristics of a cell. Existing methods for gene disruption are limited by their efficiency, time to completion, and/or the potential for confounding off-target effects. Here, we demonstrate a rapid single-step approach to targeted gene knockout in mammalian cells, using engineered ...
متن کاملTargeted Myostatin Gene Editing in Multiple Mammalian Species Directed by a Single Pair of TALE Nucleases
Myostatin (MSTN) is a negative regulator of skeletal muscle mass. Strategies to block myostatin signaling pathway have been extensively pursued to increase muscle mass in various disease settings including muscular dystrophy. Here, we report a new class of reagents based on transcription activator-like effector nucleases (TALENs) to disrupt myostatin expression at the genome level. We designed ...
متن کاملEfficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases.
The frog Xenopus, an important research organism in cell and developmental biology, currently lacks tools for targeted mutagenesis. Here, we address this problem by genome editing with zinc-finger nucleases (ZFNs). ZFNs directed against an eGFP transgene in Xenopus tropicalis induced mutations consistent with nonhomologous end joining at the target site, resulting in mosaic loss of the fluoresc...
متن کاملMegaTevs: single-chain dual nucleases for efficient gene disruption
Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AACR Education book
سال: 2014
ISSN: 1943-6475
DOI: 10.1158/aacr.edb-14-1426